Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744825

ABSTRACT

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Subject(s)
Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Glucose/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fatty Acids/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , NADP/metabolism , Protein Biosynthesis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Oxidative Stress , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics
2.
Diagnostics (Basel) ; 14(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667429

ABSTRACT

We report a [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) scan of a 17-year-old male presenting increased focal glucose metabolism of a histologically proven solitary nodular fasciitis mimicking an extranodal manifestation of Hodgkin lymphoma. This interesting image should draw attention to considering nodular fasciitis as a possible pitfall in the staging of malignant diseases.

3.
J Neurooncol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630384

ABSTRACT

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.

5.
Cell Death Dis ; 14(12): 799, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057328

ABSTRACT

HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and ß) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90ß isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.


Subject(s)
Antineoplastic Agents , HSP90 Heat-Shock Proteins , Leukemia , Neoplasms , Humans , Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Leukemia/drug therapy , Leukemia/genetics , Mutation , Drug Resistance, Neoplasm
6.
Nat Commun ; 14(1): 7717, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001143

ABSTRACT

Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.


Subject(s)
Glioma , Neuroblastoma , Humans , Child , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Disease Models, Animal , Glioma/genetics , Mutation , Gene Amplification
7.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37976029

ABSTRACT

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , RNA, Long Noncoding , Animals , Child , Humans , Mice , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Medulloblastoma/pathology , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Long Noncoding/genetics
8.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Article in English | MEDLINE | ID: mdl-37656187

ABSTRACT

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Subject(s)
Astrocytoma , Brain Neoplasms , Child , Humans , Multiomics , Proteomics , Astrocytoma/genetics , Brain Neoplasms/genetics , Action Potentials
9.
Mol Cancer ; 22(1): 136, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582744

ABSTRACT

BACKGROUND: New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS: The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS: 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS: This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Mice , Animals , Up-Regulation , Mice, Inbred C57BL , Lymphocytic choriomeningitis virus/genetics , Melanoma/drug therapy
10.
Nat Commun ; 14(1): 3936, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402719

ABSTRACT

Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.


Subject(s)
Neuroblastoma , RNA, Circular , Child , Humans , RNA, Circular/genetics , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line, Tumor , RNA/genetics , RNA/metabolism , Neuroblastoma/metabolism , Gene Expression Regulation, Neoplastic
11.
J Neurooncol ; 163(1): 143-158, 2023 May.
Article in English | MEDLINE | ID: mdl-37183219

ABSTRACT

PURPOSE: We and others have demonstrated that MYC-amplified medulloblastoma (MB) cells are susceptible to class I histone deacetylase inhibitor (HDACi) treatment. However, single drug treatment with HDACi has shown limited clinical efficacy. We hypothesized that addition of a second compound acting synergistically with HDACi may enhance efficacy. METHODS: We used a gene expression dataset to identify PLK1 as a second target in MB cells and validated the relevance of PLK1 in MB. We measured cell metabolic activity, viability, and cycle progression in MB cells after treatment with PLK1-specific inhibitors (PLK1i). Chou-Talalay synergy calculations were used to determine the nature of class I HDACi entinostat and PLK1i interaction which was validated. Finally, the clinical potential of the combination was assessed in the in vivo experiment. RESULTS: MYC-amplified tumor cells are highly sensitive towards treatment with ATP-competitive PLK1i as a monotherapy. Entinostat and PLK1i in combination act synergistically in MYC-driven MB cells, exerting cytotoxic effects at clinically relevant concentrations. The downstream effect is exerted via MYC-related pathways, pointing out the potential of MYC amplification as a clinically feasible predictive biomarker for patient selection. While entinostat significantly extended survival of mice implanted with orthotopic MYC-amplified MB PDX, there was no evidence of the improvement of survival when treating the animals with the combination. CONCLUSION: The combination of entinostat and PLK1i showed synergistic interaction in vitro, but not in vivo. Therefore, further screening of blood-brain barrier penetrating PLK1i is warranted to determine the true potential of the combination as no on-target activity was observed after PLK1i volasertib treatment in vivo.


Subject(s)
Antineoplastic Agents , Cerebellar Neoplasms , Medulloblastoma , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Antineoplastic Agents/therapeutic use , Cerebellar Neoplasms/drug therapy , Cell Line, Tumor
12.
Neurooncol Adv ; 5(1): vdad048, 2023.
Article in English | MEDLINE | ID: mdl-37215954

ABSTRACT

Background: Despite current improvements in systemic cancer treatment, brain metastases (BM) remain incurable, and there is an unmet clinical need for effective targeted therapies. Methods: Here, we sought common molecular events in brain metastatic disease. RNA sequencing of thirty human BM identified the upregulation of UBE2C, a gene that ensures the correct transition from metaphase to anaphase, across different primary tumor origins. Results: Tissue microarray analysis of an independent BM patient cohort revealed that high expression of UBE2C was associated with decreased survival. UBE2C-driven orthotopic mouse models developed extensive leptomeningeal dissemination, likely due to increased migration and invasion. Early cancer treatment with dactolisib (dual PI3K/mTOR inhibitor) prevented the development of UBE2C-induced leptomeningeal metastases. Conclusions: Our findings reveal UBE2C as a key player in the development of metastatic brain disease and highlight PI3K/mTOR inhibition as a promising anticancer therapy to prevent late-stage metastatic brain cancer.

13.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36639156

ABSTRACT

BACKGROUND: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures. Therefore, targeting epigenetic modifiers for cancer treatment has gained increasing interest, and inhibitors for various epigenetic modulators have been intensively studied in clinical trials. Here, we report a cross-entity, epigenetic drug screen to evaluate therapeutic vulnerabilities in MYC amplified MB, which sensitizes them to macrophage-mediated phagocytosis by targeting the CD47-signal regulatory protein α (SIRPα) innate checkpoint pathway. METHODS: We performed a primary screen including 78 epigenetic inhibitors and a secondary screen including 20 histone deacetylase inhibitors (HDACi) to compare response profiles in atypical teratoid/rhabdoid tumor (AT/RT, n=11), MB (n=14), and glioblastoma (n=14). This unbiased approach revealed the preferential activity of HDACi in MYC-driven MB. Importantly, the class I selective HDACi, CI-994, showed significant cell viability reduction mediated by induction of apoptosis in MYC-driven MB, with little-to-no activity in non-MYC-driven MB, AT/RT, and glioblastoma in vitro. We tested the combinatorial effect of targeting class I HDACs and the CD47-SIRPa phagocytosis checkpoint pathway using in vitro phagocytosis assays and in vivo orthotopic xenograft models. RESULTS: CI-994 displayed antitumoral effects at the primary site and the metastatic compartment in two orthotopic mouse models of MYC-driven MB. Furthermore, RNA sequencing revealed nuclear factor-kB (NF-κB) pathway induction as a response to CI-994 treatment, followed by transglutaminase 2 (TGM2) expression, which enhanced inflammatory cytokine secretion. We further show interferon-γ release and cell surface expression of engulfment ('eat-me') signals (such as calreticulin). Finally, combining CI-994 treatment with an anti-CD47 mAb targeting the CD47-SIRPα phagocytosis checkpoint enhanced in vitro phagocytosis and survival in tumor-bearing mice. CONCLUSION: Together, these findings suggest a dynamic relationship between MYC amplification and innate immune suppression in MYC amplified MB and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.


Subject(s)
Cerebellar Neoplasms , Glioblastoma , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/drug therapy , NF-kappa B/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Protein Glutamine gamma Glutamyltransferase 2 , Quality of Life , Phagocytosis , Macrophages , Inflammation/metabolism
15.
Clin Transl Oncol ; 25(3): 696-705, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36301489

ABSTRACT

BACKGROUND: Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. METHODS: PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. RESULTS AND DISCUSSION: PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. CONCLUSIONS: CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Poliovirus , Humans , Child , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Poliovirus/metabolism , RNA, Messenger/metabolism
16.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36239995

ABSTRACT

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt , Drug Resistance, Neoplasm/genetics , Temozolomide , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
17.
Nat Commun ; 13(1): 7506, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473869

ABSTRACT

Pediatric medulloblastoma (MB) is the most common solid malignant brain neoplasm, with Group 3 (G3) MB representing the most aggressive subgroup. MYC amplification is an independent poor prognostic factor in G3 MB, however, therapeutic targeting of the MYC pathway remains limited and alternative therapies for G3 MB are urgently needed. Here we show that the RNA-binding protein, Musashi-1 (MSI1) is an essential mediator of G3 MB in both MYC-overexpressing mouse models and patient-derived xenografts. MSI1 inhibition abrogates tumor initiation and significantly prolongs survival in both models. We identify binding targets of MSI1 in normal neural and G3 MB stem cells and then cross referenced these data with unbiased large-scale screens at the transcriptomic, translatomic and proteomic levels to systematically dissect its functional role. Comparative integrative multi-omic analyses of these large datasets reveal cancer-selective MSI1-bound targets sharing multiple MYC associated pathways, providing a valuable resource for context-specific therapeutic targeting of G3 MB.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Animals , Mice , Humans , Proteomics , Medulloblastoma/genetics , RNA-Binding Proteins/genetics , Cerebellar Neoplasms/genetics , Nerve Tissue Proteins
19.
Cancer Res ; 82(24): 4586-4603, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36219398

ABSTRACT

Relapse is the leading cause of death in patients with medulloblastoma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification. In paired primary-recurrent patient samples, SOX9-positive cells accumulated in medulloblastoma relapses. SOX9 expression anti-correlated with MYC expression in murine and human medulloblastoma cells. However, SOX9-positive cells were plastic and could give rise to a MYC high state. To follow relapse at the single-cell level, an inducible dual Tet model of medulloblastoma was developed, in which MYC expression was redirected in vivo from treatment-sensitive bulk cells to dormant SOX9-positive cells using doxycycline treatment. SOX9 was essential for relapse initiation and depended on suppression of MYC activity to promote therapy resistance, epithelial-mesenchymal transition, and immune escape. p53 and DNA repair pathways were downregulated in recurrent tumors, whereas MGMT was upregulated. Recurrent tumor cells were found to be sensitive to treatment with an MGMT inhibitor and doxorubicin. These findings suggest that recurrence-specific targeting coupled with DNA repair inhibition comprises a potential therapeutic strategy in patients affected by medulloblastoma relapse. SIGNIFICANCE: SOX9 facilitates therapy escape and recurrence in medulloblastoma via temporal inhibition of MYC/MYCN genes, revealing a strategy to specifically target SOX9-positive cells to prevent tumor relapse.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Animals , Humans , Mice , Cerebellar Neoplasms/pathology , Medulloblastoma/pathology , Neoplasm Recurrence, Local/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription Factors/metabolism
20.
Brain Spine ; 2: 100865, 2022.
Article in English | MEDLINE | ID: mdl-36248154

ABSTRACT

Introduction: Postoperative residual tumor can occur for intentional or unintentional reasons. Decision-making regarding second-look surgery has to weigh molecular biology, probability of total resection and prognostic relevance against potential additional morbidity. In interdisciplinary tumor boards the neurosurgeon has to estimate risk and efficacy of second-look surgery in individual cases, based on precise data. Research question: Aim of this study was to provide such data by analyzing morbidity and volumetric efficacy of second-look surgery at a designated pediatric neuro-oncology unit. Material and methods: Children who received second-look surgery in 2007-2018 after incomplete resections were analyzed retrospectively. Measurements were performed on early postoperative magnetic resonance imaging, comparing axial diameter-based measurement as well as computer-assisted volumetric analysis. Results: 59 patients (37% of the overall cohort; 21 female; mean age: 8 â€‹± â€‹5 years) received a subtotal (n â€‹= â€‹35) or near total (n â€‹= â€‹24) resection. After interdisciplinary case review, 12 of these patients received second-look surgery mainly for residual ependymoma. This led to further tumor volume reduction in all cases (new degrees of resection: subtotal â€‹= â€‹2, near total â€‹= â€‹6, gross total â€‹= â€‹4). No new permanent morbidity or perioperative mortality was observed. Discussion and conclusion: Second-look surgery did not increase mortality and permanent morbidity, had an 8% rate of transient morbidity and achieved tumor volume reduction above 95% in 75% of selected cases, with 4 additional gross total resections. Second-look surgery is safe and effective with regard to volumetric outcome parameters even in cases with good initial resections, although the role of second-look surgery regarding oncological outcome has to be further investigated in times of personalized molecular medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...